Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions| Reviewers

Login 
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 158    
     
ORIGINAL ARTICLE
Year : 2016  |  Volume : 6  |  Issue : 3  |  Page : 189-195

Effect of anodization and alkali-heat treatment on the bioactivity of titanium implant material (an in vitro study)


1 Department of Dental Biomaterials, School of Dentistry, Al-Azhar University, Egypt; Department of Restorative Dental Sciences, Alfarabi Colleges, Riyadh, Kingdom of Saudi Arabia
2 Department of Dental Biomaterials, Faculty of Oral and Dental Medicine, Cairo University, Egypt
3 Department of Preventive Dental Sciences, Alfarabi Colleges, Riyadh, Kingdom of Saudi Arabia

Correspondence Address:
Dr. Kusai Baroudi
Department of Preventive Dental Sciences, Alfarabi Colleges, P. O. Box: 85184, Riyadh 11691
Kingdom of Saudi Arabia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2231-0762.183107

Rights and Permissions

Objective: This study was aimed to assess the effect of anodized and alkali-heat surface treatment on the bioactivity of titanium alloy (Ti-6Al-4V) after immersion in Hank's solution for 7 days. Materials and Methods: Fifteen titanium alloy samples were used in this study. The samples were divided into three groups (five for each), five samples were anodized in 1M H3PO4at constant voltage value of 20 v and another five samples were alkali-treated in 5 M NaOH solution for 25 min at temperature 60°C followed by heat treatment at 600°C for 1 h. All samples were then immersed in Hank's solution for 7 days to assess the effect of surface modifications on the bioactivity of titanium alloy. The different treated surfaces and control one were characterized by X-ray diffraction, atomic force microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transformation infra-red spectroscopy. Statistical analysis was performed with PASW Statistics 18.0® (Predictive Analytics Software). Results: Anodization of Ti-alloy samples (Group B) led to the formation of bioactive titanium oxide anatase phase and PO43− group on the surface. The alkali-heat treatment of titanium alloy samples (Group C) leads to the formation of bioactive titania hydrogel and supplied sodium ions. The reaction between the Ti sample and NaOH alkaline solution resulted in the formation of a layer of amorphous sodium titania on the Ti surface, and this layer can induce apatite deposition. Conclusions: The surface roughness and surface chemistry had an excellent ability to induce bioactivity of titanium alloy. The anodization in H3PO4produced anatase titanium oxide on the surface with phosphate originated from electrolytes changed the surface topography and allowed formation of calcium-phosphate.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1745    
    Printed30    
    Emailed0    
    PDF Downloaded119    
    Comments [Add]    
    Cited by others 5    

Recommend this journal