Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions| Reviewers

Login 
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 711    
     
ORIGINAL ARTICLE
Year : 2016  |  Volume : 6  |  Issue : 5  |  Page : 410-416

Forces in initial archwires during leveling and aligning: An in-vitro study


1 Department of Orthodontics, R.I.M.S, Kadapa, Andhra Pradesh, India
2 Department of Public Health Dentistry, C.K.S Theja Institute of Dental Sciences, Tirupati, Andhra Pradesh, India
3 Department of Periodontics and Implantology, Drs. SNR Siddhartha Institute of Dental Sciences, Chinnaoutpalli, Andhra Pradesh, India
4 Department of Orthodontics, KLRs Lenora Institute of Dental Sciences, Rajahmundry, Andhra Pradesh, India
5 Department of Dentistry, GEMS Medical College, Srikakulam, Andhra Pradesh, India

Correspondence Address:
Rajesh Kumar Reddy
Department of Orthodontics, R.I.M.S, Kadapa, Andhra Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2231-0762.192940

Rights and Permissions

Aim: This in-vitro study measured the force deflection behavior of selected initial alignment archwires by conducting three-point bending tests under controlled tests. The study tested three wire designs, namely, co-axial multistranded stainless steel wires, nickel–titanium, and copper–nickel–titanium archwires. Materials and Methods: The archwires were ligated to a specially designed metal jig, simulating the arch. A testing machine (Instron) recorded activation and deactivation forces of different deflections at 37°C. Forces on activation and deactivation were compared by one-way analysis of variance (ANOVA). Results: Significant differences (P < 0.05) in activation and deactivation forces were observed among the tested wires. The co-axial multistranded wire had the lowest mean activation and deactivation forces, whereas conventional nickel–titanium wires had more mean activation and deactivation forces at different deflections. Conclusion: The activation and deactivation forces were higher for nickel–titanium followed by copper–nickel titanium and co-axial wires. The amount of percentage force loss was more for co-axial wire, indicating that these wires are not ideal for initial leveling and aligning.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1402    
    Printed17    
    Emailed0    
    PDF Downloaded243    
    Comments [Add]    

Recommend this journal