Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions| Reviewers

Login 
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 1115    
     
ORIGINAL ARTICLE
Year : 2016  |  Volume : 6  |  Issue : 6  |  Page : 559-567

The efficiency of child formula dentifrices containing different calcium and phosphate compounds on artificial enamel caries


1 Department of Pediatric Dentistry, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
2 Research Office, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
3 Dental Clinic, Pakkred Hospital, Nonthaburi Province, Thailand

Correspondence Address:
Praphasri Rirattanapong
Department of Pediatric Dentistry, Faculty of Dentistry, Mahidol University, 6 Yothi Street, Bangkok - 10400
Thailand
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2231-0762.195517

Rights and Permissions

Objectives: Fluoride toothpaste has been extensively used to prevent dental caries. However, the risk of fluorosis is concerning, especially in young children. Calcium phosphate has been an effective remineralizing agent and is present in commercial dental products, with no risk of fluorosis to users. This in vitro study aimed to compare the effects of different calcium phosphate compounds and fluoride-containing dentifrices on artificial caries in primary teeth. Materials and Methods: Fifty sound primary incisors were coated with nail varnish, leaving two 1 mm2 windows on the labial surface before immersion in demineralizing solution for 96 hours to produce artificial enamel lesions. Subsequently, one window from each tooth was coated with nail varnish, and all 50 teeth were divided into five groups (n = 10); group A – deionized water; group B – casein phosphopeptide–amorphous calcium phosphate (CPP–ACP) paste (Tooth Mousse); group C – 500 ppm F (Colgate Spiderman®); group D – nonfluoridated toothpaste with triple calcium phosphate (Pureen®); and group E – tricalcium phosphate (TCP). Polarized light microscopy and Image-Pro® Plus software were used to evaluate lesions. Results: After a 7-day pH-cycle, mean lesion depths in groups A, B, C, D, and E had increased by 57.52 ± 10.66%, 33.28 ± 10.16%, 17.04 ± 4.76%, 32.51 ± 8.99%, and 21.76 ± 8.15%, respectively. All data were processed by the Statistical Package for the Social Sciences (version 16.0) software package. Comparison of percentage changes using one-way analysis of variance and Fisher's least squares difference tests at a 95% level of confidence demonstrated that group A was significantly different from the other groups (P < 0.001). Lesions in groups B and D had a significant lesion progression when compared with groups C and E. Conclusions: All toothpastes in this study had the potential to delay the demineralization progression of artificial enamel caries in primary teeth. The fluoride 500 ppm and TCP toothpastes were equal in the deceleration of enamel caries progression and better than CPP–ACP paste and TCP toothpaste.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1350    
    Printed32    
    Emailed0    
    PDF Downloaded140    
    Comments [Add]    

Recommend this journal