Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions| Reviewers

Login 
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 1133    
     
ORIGINAL ARTICLE
Year : 2019  |  Volume : 9  |  Issue : 6  |  Page : 637-645

The effectiveness of micro-osteoperforations during canine retraction: A three-dimensional randomized clinical trial


1 Department of Orthodontics, Hospital of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
2 Department of Orthodontics, College of Dentistry, Thamar University, Thamar, Yemen
3 Department of Maxillofacial Surgery and Diagnostic Science, College of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
4 Department of Dentistry, First affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
5 Department of Preventive Dental Sciences, Najran University, Najran, Kingdom of Saudi Arabia

Correspondence Address:
Hou Y Xia
Department of Orthodontics, Hospital of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi.
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jispcd.JISPCD_233_19

Rights and Permissions

Aim: A major challenge in orthodontics is decreasing treatment time without compromising treatment outcome. The purpose of this split-mouth trial was to evaluate micro-osteoperforations (MOPs) in accelerating orthodontic tooth movement. Materials and Methods: Eight patients of both genders were selected, age ranging between 15 and 40 years, with Class II Division 1 malocclusion. The participants in this trial with MOPs were randomly allocated to either the right or the left side, distal to the maxillary canine. First maxillary premolars were extracted as part of the treatment plan on both sides and then canine retraction was applied. Miniscrews were used to support anchorage. MOP side received (three small perforations) placed on the buccal bone, distal to the maxillary canine, on randomly selected side using an automated mini-implant driver and the other side was the control side. Blinding was used at the data collection and analysis stages. The primary outcome was the rate of canine retraction measured with a three-dimensional (3D) digital model from the baseline to the first 2 weeks superimposed at the rugae area from the baseline to the first, second, and third months. The following secondary outcomes were examined: anchorage loss, canine tipping, canine rotation, root resorption, plaque index, and gingival index. Pain level, pain interference with the patients’ daily life, patients’ satisfaction with the procedure and degree of ease, willingness to repeat the procedure, and recommendation to others were also evaluated. Results: No statistically significant difference was observed in the rates of tooth movement between the MOP and the control sides at all-time points (first month: P = 0.77; mean difference, 0.2 mm; 95% CI, −0.13, 0.18 mm; second month: P = 0.50; mean difference, −0.08 mm; 95% CI, −0.33, 0.16 mm; third month: P = 0.76; mean difference, −0.05 mm; 95% CI, −0.40, 0.29 mm). There were also no differences in anchorage loss, rotation, tipping, root resorption, plaque index, periodontal index, and pain perception between the MOP and control sides at any time point (P > 0.05). MOPs had no effect on the patients’ daily life except for a feeling of swelling on the first day (P = 0.05). Level of satisfaction and degree of easiness of the procedure were high. Conclusion: According to our clinical trial, MOPs cannot help in speeding up a canine retraction.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed227    
    Printed32    
    Emailed0    
    PDF Downloaded57    
    Comments [Add]    

Recommend this journal