Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions| Reviewers

Login 
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 73    
     
REVIEW ARTICLE
Year : 2020  |  Volume : 10  |  Issue : 2  |  Page : 134-141

How fluoride protects dental enamel from demineralization


1 Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
2 Department of Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio, USA

Correspondence Address:
Prof. James Patrick Simmer
Prof. James Patrick Simmer, Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Pl, Ann Arbor, Michigan 48108.
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jispcd.JISPCD_406_19

Rights and Permissions

Introduction: How fluoride (F) protects dental enamel from caries is here conveyed to dental health-care providers by making simplifying approximations that accurately convey the essential principles, without obscuring them in a myriad of qualifications. Materials and Methods: We approximate that dental enamel is composed of calcium hydroxyapatite (HAP), a sparingly soluble ionic solid with the chemical formula Ca10(PO4)6(OH)2. Results: The electrostatic forces binding ionic solids together are described by Coulomb’s law, which shows that attractions between opposite charges increase greatly as their separation decreases. Relatively large phosphate ions (PO43–) dominate the structure of HAP, which approximates a hexagonal close-packed structure. The smaller Ca2+ and OH ions fit into the small spaces (interstices) between phosphates, slightly expanding the close-packed structure. F ions are smaller than OH ions, so substituting F for OH allows packing the same number of ions into a smaller volume, increasing their forces of attraction. Dental decay results from tipping the solubility equilibrium Ca10(PO4)6(OH)2 (s) ⇔ 10Ca2+ (aq) + 6PO42– (aq) + 2OH (aq) toward dissolution. HAP dissolves when the product of its ion concentrations, [Ca2+]10×[PO43–]6×[OH]2, falls below the solubility product constant (Ksp) for HAP. Conclusion: Because of its more compact crystal structure, the Ksp for fluorapatite (FAP) is lower than the Ksp for HAP, so its ion product, [Ca2+]10×[PO43–]6×[F]2, must fall further before demineralization can occur. Lowering the pH of the fluid surrounding enamel greatly reduces [PO43–] (lowering the ion products of HAP and FAP equally), but [OH] falls much more rapidly than [F], so FAP better resists acid attack.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1346    
    Printed48    
    Emailed0    
    PDF Downloaded222    
    Comments [Add]    

Recommend this journal