Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions| Reviewers

Login 
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 624    
     
ORIGINAL ARTICLE
Year : 2020  |  Volume : 10  |  Issue : 3  |  Page : 279-285

Numerical three-dimensional finite element modeling of cavity shape and optimal material selection by analysis of stress distribution on class V cavities of mandibular premolars


1 Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences, Manipal, Manipal, Karnataka, India
2 Department of Pharmacology, Melaka Manipal Medical College, Manipal, Karnataka, India
3 Department of Oral Medicine and Radiology, Manipal College of Dental Sciences, Manipal, Karnataka, India
4 Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India

Correspondence Address:
Dr. Nithesh Naik
Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka.
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jispcd.JISPCD_75_20

Rights and Permissions

Aim: Adhesive restoration does not depend primarily on the configuration of the shape of the cavity. Under varying loading conditions, it is essential to know the stress concentration and load transfer mechanism for distinct cavity shapes. The aim of this study was to evaluate and compare the biomechanical characteristics of various cavity shapes, namely oval, elliptical, trapezoidal, and rectangular shapes of class V cavities on mandibular premolars restored with amalgam, glass ionomer cement, and Cention N using three-dimensional (3D) finite element analysis. Materials and Methods: A 3D prototype of a mandibular premolar was generated by Digital Imaging and Communications in Medicine (DICOM) images obtained from the cone beam computed tomography and imported to 3D modeling software tool, SpaceClaim. The four distinct load magnitudes of 100, 150, 200, and 250N were applied as a pressure load perpendicular to the lingual plane of the lingual cusp of the occlusal surface (normal load) and at 45° to same (oblique load). The stress distribution patterns and the maximum von Mises stresses were analyzed and compared. Results: The occlusal stresses were distributed from the force loading point in an approximate actinomorphic pattern, and when the force load was close to the margin, the stress was much greater. Conclusion: Ovoid cavity showed lesser stress concentration and deformation for each of the tested restorative material.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed346    
    Printed14    
    Emailed0    
    PDF Downloaded100    
    Comments [Add]    

Recommend this journal