Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions| Reviewers

Login 
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 203    
     
ORIGINAL ARTICLE
Year : 2020  |  Volume : 10  |  Issue : 4  |  Page : 511-519

A novel, simple, frequent oral cleaning method reduces damaging bacteria in the dental microbiota


1 MSAE School, Fairfield, Iowa, USA
2 Department of Pathology, University of Utah School of Medicine, Salt Lake, Utah, USA
3 Foodchain ID, Fairfield, Iowa, USA

Correspondence Address:
Dr. Pradheep Chhalliyil
Sakthi Foundation, 4690 S Lakeshore Drive, 2072, Tempe 85282, Arizona.
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jispcd.JISPCD_31_20

Rights and Permissions

Aim: Dental diseases can be prevented by reducing early bacterial colonization in biofilm, a precursor to mature dental plaque. Most studies on dental disease pathogenesis focus on mature plaque and fail to address the impact of oral cleaning on biofilm formation. Here we used next-generation metagenomics to assess the effects of a new method of regular, simple biofilm disruption on the oral metagenome. Materials and Methods: This was a randomized, controlled study of 45 healthy children divided into three groups. Participants avoided oral cleaning for 3 days and then performed 10 days of oral cleaning either by: (1) brushing and tongue cleaning twice a day (BT) with toothpaste; (2) Gum and tooth rubbing with Index Finger Tongue cleaning and water Swishing (GIFTS) after each meal, snack, and drink; or (3) GIFTS twice a day with nano-charcoal and tongue cleaning (CT) (n = 15 per group). Saliva, plaque, and tongue scraping samples were collected on day 0 and 10 for quantitative polymerase chain reaction (qPCR) and next-generation metagenomics sequencing to analyze microbiome taxa differences between groups. Results: GIFTS more significantly reduced (P < 0.004) total bacteria in saliva than BT (P < 0.02). Metagenomics revealed a significant reduction in Firmicutes in GIFTS and CT tongue samples compared to BT samples. BT and CT saliva samples showed significantly more Streptococcus species than GIFTS saliva samples. In the plaque samples, GIFTS cleaning significantly reduced early colonizers, including Streptococcus, compared to the BT and CT methods. Conclusion: Here, we introduce the “frequent disruption of biofilm” concept for enhanced oral hygiene. GIFTS can be used to prevent early bacterial colonization of biofilm and plaque formation in both small children and adults. Frequent biofilm disturbance more effectively disrupts early bacterial colonization than twice oral cleaning, is nonabrasive, and is, therefore, a practical and straightforward complement to regular toothbrushing for improved oral hygiene and disease prevention.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed579    
    Printed15    
    Emailed0    
    PDF Downloaded76    
    Comments [Add]    

Recommend this journal