Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions| Reviewers

  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 2540    

Table of Contents   
Year : 2021  |  Volume : 11  |  Issue : 5  |  Page : 510-515
Impact of air and manual scaling on dental anxiety and blood glucose level among diabetic patients

1 Department of Periodontal Dentistry, College of Dentistry, University of Mustansiriyah, Iraq, Baghdad
2 Department of Prosthetic Dentistry, College of Dentistry, University of Mustansiriyah, Iraq, Baghdad

Date of Submission21-Nov-2020
Date of Decision14-Feb-2021
Date of Acceptance06-Apr-2021
Date of Web Publication05-Aug-2021

Correspondence Address:
Dr. Tameem K Jassim
Department of Prosthetic Dentistry, College of Dentistry, University of Mustansiriyah, Iraq.
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jispcd.JISPCD_411_20

Rights and Permissions


Aims: The current study aimed at describing the short-term effect of nonsurgical periodontal treatment on dental anxiety and blood glucose level change among diabetic patients. Materials and Methods: One hundred and fifty patients with diabetes participated in a cross-sectional study design. All of them were divided into two groups, with 75 patients in each group. The first group was treated with air scaling, whereas the second group was treated with manual scaling. The determination of treatment needs and the evaluation of periodontal health status were achieved by using Community Periodontal Index for Treatment Need (CPITN). The level of dental anxiety was assessed by using Visual Analogue Scale (VAS). The glucose change was calculated by subtracting the glucose level before treatment from the glucose level straight after treatment. Results: No significant difference in glucose level was observed between manual scaling and air scaling after treatment (P = 0.076), and the level of glucose was significantly lower after scaling treatment within the treatment groups (P = 0.000). The level of glucose change between the groups was significantly lower for the manual scaling treatment group (P = 0.013), and it was significantly correlated with VAS (P = 0.000). Multiple regression analysis showed a significant association between the treatment groups (P = 0.007). Conclusions: Scaling reduced blood glucose and dental anxiety levels in patients with diabetes. Manual scaling was associated with reduced glucose level change less than air scaling after treatment.

Keywords: Diabetes mellitus, general health, periodontal disease

How to cite this article:
Alwan AM, Mousa HA, Talib HJ, Jassim TK. Impact of air and manual scaling on dental anxiety and blood glucose level among diabetic patients. J Int Soc Prevent Communit Dent 2021;11:510-5

How to cite this URL:
Alwan AM, Mousa HA, Talib HJ, Jassim TK. Impact of air and manual scaling on dental anxiety and blood glucose level among diabetic patients. J Int Soc Prevent Communit Dent [serial online] 2021 [cited 2022 Aug 13];11:510-5. Available from: https://www.jispcd.org/text.asp?2021/11/5/510/323182

   Introduction Top

Diabetes mellitus (DM) is characterized by elevated blood glucose levels, and it is considered as a heterogeneous group of metabolic disorders. Insufficient insulin secretion is the main feature of type 1 DM due to destructive autoimmune processes of the pancreatic β-cells, whereas body resistance to insulin circulation is the main feature of type 2 DM.[1] Retinopathy, nephropathy, neuropathy, and vascular syndromes may be the result of a prolonged hyperglycemic state of diabetes.[2]

Periodontal disease is a chronic inflammatory bacterial infection of the gingival bone that supports the tooth, which is caused by the accumulation of gram-negative anaerobic microorganisms that adhere to the teeth.[3] Periodontitis is common in patients with HIV/AIDS, DM, and cardiovascular disease.[4] DM and periodontal inflammation have a disturbing effect on the health of millions of people worldwide,[5] and individuals with type 2 DM are more likely to be associated with alveolar bone loss.[6] It has been reported that periodontal disease is accompanied by poor glycemic control.[7],[8]

In spite of the fact that many studies have tested dissimilar periodontal protocols for patients with DM, just a few have investigated the viability of these treatments among diabetic and nondiabetic subjects. A few studies have shown that both patients with diabetes and those without diabetes were similar in their short- and long-term responses after surgical and nonsurgical periodontal treatment.[9],[10],[11],[12],[13] However, other studies have shown that patients without diabetes responded better than patients with diabetes to periodontal treatment.[14],[15],[16],[17]

Scaling and root planing are considered as the gold standard nonsurgical treatment of periodontitis,[18] and they are most commonly used currently for periodontal treatment.[19] Some clinical studies have shown that scaling and root planing efficiently decreases the microbial level in a periodontal pocket and improves the clinical parameters such as bleeding on probing, probing depths, and clinical attachment level.[20] However, scaling and root planing manually can frequently be difficult and time-consuming owing to the root morphology variations when working blindly at deep pocket spots.[20],[21] The time required for instrumentation is shorter for ultrasonic equipment than for hand instruments.[20],[22],[23] The power-driven ultrasonic mechanical instruments were utilized by operators more efficiently to reach difficult spots such as furcation areas more easily,[24] owing to their vibrating mechanism that is capable of removing root surface debris.[25] In addition, ultrasonic scalers comprise a liquid output, which helps in cooling the tool throughout usage.[24] However, a nonsignificant difference was observed when comparing the microbiological and clinical outcomes achieved by ultrasonic equipment with those accomplished by hand instrumentation.[24],[25],[26]

Regarding surface roughness, the air scalers smoothened the surfaces slightly less effective than manual scalers.[27],[28] This improvement in surface smoothness when using manual scaling could be explained due to the fact of better tactile and proprioceptive senses and to the controlled movement of the operator.[29] In a recent systematic review of literature,[30] it was concluded that the nonsurgical periodontal treatment by using only scaling and root planing improved the glycemic status by about 0.26% for patients with type 2 DM. However, this improvement was only observed after four months of periodontal treatment. Therefore, a shorter period of scaling and root planing could also be considered and investigated. Further, information investigating the association between manual and ultrasonic scaling methods with DM glucose level change after treatment is scarce in the literature. Therefore, this study aimed at investigating the impact of different modalities of treatments, such as manual- and air scaling, on dental anxiety and blood glucose level change among patients with diabetes directly after nonsurgical periodontal therapy and at determining its association with other confounding factors.

   Materials and Methods Top

A total of 150 participants aged between 35 and 55 years were recruited for this study between December 2016 and December 2017. All participants were provided with a consent form before the study and were divided into two groups. The first group consisted of 75 patients with periodontal treatment using air scaling, whereas the second group consisted of 75 patients treated with manual scaling. The ethical standard outlined in the 1964 Helsinki declaration was followed for all participants in the study. The study was approved by the Medical Ethics Committee (protocol 60; 5 November 2017). Further, a consent form was attained from all participants after their endorsement.

The inclusion criteria were as follows: Patients have at least five teeth remaining, diagnosed with periodontitis on any of the remaining teeth with a periodontal pocket depth (PPD) deeper than 4mm on probing, and type 1 or type 2 DM. Patients’ smoking history was recorded; nevertheless, smokers were not excluded from the study. Patients with pregnancy, a history of present or previous cardiovascular disease, and/or medically compromised patients were excluded from the study.

Clinical assessment of calculus, gingival bleeding, and periodontal pockets was done by using CPITN to determine the distribution of periodontal condition before treatment. Blood glucose level was determined by using an Accu-Check Active meter (Roche Diabetes Care). A blood drop taken from each patient was applied to the test field, whereas the test strip was attached to the testing meter according to the manufactural instructions. After completion of treatment, patients were asked to specify their anxiety level on a horizontal VAS line from 0 to 100 mm, where 0 represents “not anxious at all” and 100 represents “extremely anxious.”[31]

Blood glucose level was recorded for each patient, at baseline before treatment and after completion of the dental hygiene treatment without the use of local anesthetics. One examiner (HA) performed the measurements for all the patients from each group.

Statistical analysis

Data were analyzed using SPSS with P < 0.05 significance level, and they were investigated for normality using the Shapiro–Wilk test. Chi-square, Mann–Whitney, and Wilcoxon Signed-Ranks tests were used to analyze the difference between the two treatment groups. Correlation between glucose level change and VAS was determined using the Spearman Rank Correlation test. The multivariate regression analysis model was used to determine the association of blood glucose level change after treatment with the scaling groups, gender, smoking, and CPITN variables.

   Results Top

One hundred and fifty patients participated in this study, and they were divided into two groups. The first group consisted of 75 patients (51 males, 24 females), in whom periodontal treatment was done by air scaling; the second group consisted of 75 patients (27 males, 48 females), in whom periodontal treatment was done by manual scaling. There was a significant difference in gender (0.000) and smoking (0.038) between treatment groups, as shown in [Table 1]. The level of glucose was significantly lower (0.000) after scaling treatment within the groups, whereas no significant difference (0.076) was observed between the groups after treatment. However, the change in glucose level was significantly lower with manual scaling more than air scaling, as illustrated in [Table 2]. Dental anxiety level was significantly correlated with a change in glucose level (0.000), and an increase of dental anxiety level increased the glucose level change [Table 3]. The multiple regression model was used to determine the association between the change in glucose levels. A significant association was only observed between the treatment groups (air scaling versus manual scaling) (P = 0.007). Manual scaling reduced glucose change by about 11 units less than air scaling [Table 4].
Table 1: Demographic data, according to the treatment groups (Air Scaling and Manual Scaling)

Click here to view
Table 2: Glucose and glucose level change between and within groups (air scaling and manual scaling)

Click here to view
Table 3: Correlation between glucose level change and VAS

Click here to view
Table 4: Multivariate regression analysis to detect the association of the change in glucose level before and after treatment with scaling groups, gender, smoking, and CPITN as predictable variables

Click here to view

   Discussion Top

Usually, the dental clinician can deal with the patient with diabetes in a way that is reliable with managing a nondiabetic individual.[32] Therefore, patient recruitments in this study included type 1 and 2 DM participants with periodontal disease. Regarding patients’ gender, no association was observed between gender and patients’ glucose level change. This was in accordance with a previous study by Bakhshandeh et al., in which no gender difference was observed in the oral health indices in patients with diabetes.[33] Smokers and nonsmokers do not appear to influence glucose levels in patients with diabetes.[34],[35] Similarly, in this study it was observed that most of the patients were nonsmokers; however, smoking as a variable was not found to be associated with glucose level change.

The short-term effect of periodontitis on diabetes status was not previously considered. Therefore, the association between the short-term effect of blood glucose level change and nonsurgical periodontal treatment was considered in the current study instead of the long-term (one to three months) follow-up after an intervention.

The periodontal condition of patients with diabetes supports the necessity to create a complete oral health advancement program for patients with diabetes.[33] Scaling as a nonsurgical periodontal therapy is considered an important part of the treatment of periodontal disease.[36] In 1982, the CPITN was proposed and it was a rapidly accepted instrument that provided the scientific community with a huge amount of epidemiological data.[37]

Despite the different scaling techniques utilized in this study, results showed reduced blood glucose levels after treatment for both groups. This could be explained due to a better patient’s perception of the treatment offered,[38] as there is a correlation between anxiety and patients with DM.[39],[40] Anxiety as an emotional factor needs to be addressed in patients with DM for a better quality of life.[41] It is generally perceived that stress may have a negative effect on the health of patients with DM and especially on type 2 DM. The experience of stress is related to the release of counterregulatory hormones and energy mobilization, which frequently result in increased blood glucose levels.[42],[43] Moreover, the improvement of blood glucose levels was found to be significantly associated with stress management in patients with type 2 DM.[44]

In this study, we investigated the association between glucose change before and after treatment and other confounding factors such as scaling groups, gender, smoking, and CPITN using a linear regression analysis model. The manual scaling group as a predictor in this study reduced glucose level change more than the air scaling group. Previous studies concluded that utilizing ultrasonic technique needs a reduced treatment time than the manual technique, and the former was believed to enhance patients’ perception.[20],[22],[23] However, the results of this study showed that the manual scaling reduced glucose level in patients with DM less than air scaling. Different periodontal procedures in patients manifested different fear of pain and anxiety.[45] In the present study, it is possible that the scaling of the dental surface might stimulate free nerve endings in some oral tissues such as the gingiva, tooth pulp, and periodontal ligament.[46] The ultrasonic instrument is used commonly in periodontal treatment due to its facilitator properties as a mechanical device. However, as normal human sense sounds are at a level between 20 Hz and 20,000 Hz, sounds that exceed this frequency, such as ultrasonic scalers and air turbine, resulted in possible complications to patients exposed to ultrasound.[47] On the other hand, an air scaler is a vibrating machine; the vibrational force is considered as its main principal feature of work, which is not controlled, and it varies depending on the operator’s experience.[28] However, better tactile and proprioceptive senses were observed when using a manual scaler.[29]

Inequality of gender distribution between treatment groups is considered as one of the limitations of this study. Similarly, it was also observed that most of the patients were nonsmokers in both groups. However, the regression model revealed that there was no association found between gender, smoking, and glucose level change. Future studies could control predictable variables by increasing the number of participants.

   Conclusion Top

Within the limitation of this study, it was concluded that scaling generally reduced blood glucose and dental anxiety levels in patients with diabetes after treatment. However, manual scaling was associated with reduced blood glucose level change less than air scaling. Gender, age, and CPITN showed no association with glucose level change.

Future scope/clinical significance

Our article creates a paradigm for future studies to encourage researchers to focus on this area. The information investigating the association between manual and ultrasonic scaling methods with glucose level change in patients with type 2 DM after periodontal treatment is scarce in the literature.


Special thanks are due to all the staff at the Department of Periodontal Dentistry, College of Dentistry, University of Mustansiriyah.

Financial support and sponsorship


Conflicts of interest


Authors’ contributions

Alyamama M. Alwan: conceived the idea, collected the data, drafted the manuscript, revised the manuscript, edited the manuscript, and approved the final version to be published. Hussein A. Mousa: conceived the idea, collected the data, drafted the manuscript, and approved the final version to be published. Haider J. Talib: conceived the idea, collected the data, drafted the manuscript, and approved the final version to be published. Tameem K. Jassim: performed the statistical analysis, drafted the manuscript, revised the manuscript, edited the manuscript, and approved the final version to be published.

Ethical policy and institutional review board statement

The ethical standard outlined in the 1964 Helsinki declaration was followed for all participants in the study.

Patient declaration of consent

A consent form was obtained from all participants after their endorsement.

Data availability statement

The data set used in the current study is available (option as appropriate): (a) Repository name; (b) name of the public domain resources; (c) data availability within the article or its supplementary materials; (d) available on request from (contact name/email id); (e) dataset can be made available after the embargo period due to commercial restrictions.

   References Top

American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014;37:S81-90.  Back to cited text no. 1
American Diabetes Association. Standards of medical care in diabetes—2015 abridged for primary care providers. Clin Diabetes 2015;33:97.  Back to cited text no. 2
Negrato CA, Tarzia O. Buccal alterations in diabetes mellitus. Diabetol Metab Syndr 2010;2:3.  Back to cited text no. 3
Nishimura F, Kono T, Fujimoto C, Iwamoto Y, Murayama Y. Negative effects of chronic inflammatory periodontal disease on diabetes mellitus. J Int Acad Periodontol 2000;2:49-55.  Back to cited text no. 4
O’Reilly PG, Claffey NM. A history of oral sepsis as a cause of disease. Periodontol 2000 2000;23:13-8.  Back to cited text no. 5
Emrich LJ, Shlossman M, Genco RJ. Periodontal disease in non-insulin-dependent diabetes mellitus. J Periodontol 1991;62:123-31.  Back to cited text no. 6
Feingold KR, Soued M, Serio MK, Moser AH, Dinarello CA, Grunfeld C. Multiple cytokines stimulate hepatic lipid synthesis in vivo. Endocrinology 1989;125:267-74.  Back to cited text no. 7
Grossi SG, Genco RJ. Periodontal disease and diabetes mellitus: A two-way relationship. Ann Periodontol 1998;3:51-61.  Back to cited text no. 8
Tervonen T, Knuuttila M, Pohjamo L, Nurkkala H. Immediate response to nonsurgical periodontal treatment in subjects with diabetes mellitus. J Clin Periodontol 1991;18:65-8.  Back to cited text no. 9
Westfelt E, Rylander H, Blohmé G, Jonasson P, Lindhe J. The effect of periodontal therapy in diabetics. Results after 5 years. J Clin Periodontol 1996;23:92-100.  Back to cited text no. 10
Christgau M, Palitzsch KD, Schmalz G, Kreiner U, Frenzel S. Healing response to non-surgical periodontal therapy in patients with diabetes mellitus: Clinical, microbiological, and immunologic results. J Clin Periodontol 1998;25:112-24.  Back to cited text no. 11
Sonoki K, Nakashima S, Takata Y, Naito T, Fujisawa K, Ootsubo T, et al. Decreased lipid peroxidation following periodontal therapy in type 2 diabetic patients. J Periodontol 2006;77:1907-13.  Back to cited text no. 12
Kardeşler L, Buduneli N, Cetinkalp S, Kinane DF. Adipokines and inflammatory mediators after initial periodontal treatment in patients with type 2 diabetes and chronic periodontitis. J Periodontol 2010;81:24-33.  Back to cited text no. 13
Navarro-Sanchez AB, Faria-Almeida R, Bascones-Martinez A. Effect of non-surgical periodontal therapy on clinical and immunological response and glycaemic control in type 2 diabetic patients with moderate periodontitis. J Clin Periodontol 2007;34:835-43.  Back to cited text no. 14
Correa FO, Gonçalves D, Figueredo CM, Gustafsson A, Orrico SR. The short-term effectiveness of non-surgical treatment in reducing levels of interleukin-1beta and proteases in gingival crevicular fluid from patients with type 2 diabetes mellitus and chronic periodontitis. J Periodontol 2008;79:2143-50.  Back to cited text no. 15
Kardeşler L, Buduneli N, Çetinkalp S, Lappin D, Kinane DF. Gingival crevicular fluid IL-6, tPA, PAI-2, albumin levels following initial periodontal treatment in chronic periodontitis patients with or without type 2 diabetes. Inflamm Res 2011;60:143-51.  Back to cited text no. 16
Altamash M, Klinge B, Engström PE. Periodontal treatment and HbA1c levels in subjects with diabetes mellitus. J Oral Rehabil 2016;43:31-8.  Back to cited text no. 17
Cobb CM. Non-surgical pocket therapy: Mechanical. Ann Periodontol 1996;1:443-90.  Back to cited text no. 18
Schwarz F, Sculean A, Berakdar M, Georg T, Reich E, Becker J. Periodontal treatment with an er:YAG laser or scaling and root planing. A 2-year follow-up split-mouth study. J Periodontol 2003;74:590-6.  Back to cited text no. 19
Obeid PR, D’Hoore W, Bercy P. Comparative clinical responses related to the use of various periodontal instrumentation. J Clin Periodontol 2004;31:193-9.  Back to cited text no. 20
Serino G, Rosling B, Ramberg P, Socransky SS, Lindhe J. Initial outcome and long-term effect of surgical and non-surgical treatment of advanced periodontal disease. J Clin Periodontol 2001;28:910-6.  Back to cited text no. 21
Kishida M, Sato S, Ito K. Effects of a new ultrasonic scaler on fibroblast attachment to root surfaces: A scanning electron microscopy analysis. J Periodontal Res 2004;39:111-9.  Back to cited text no. 22
Laurell L, Pettersson B. Periodontal healing after treatment with either the titan-S sonic scaler or hand instruments. Swed Dent J 1988;12:187-92.  Back to cited text no. 23
D’Ercole S, Piccolomini R, Capaldo G, Catamo G, Perinetti G, Guida L. Effectiveness of ultrasonic instruments in the therapy of severe periodontitis: A comparative clinical-microbiological assessment with curettes. New Microbiol 2006;29:101-10.  Back to cited text no. 24
Cobb CM. Clinical significance of non-surgical periodontal therapy: An evidence-based perspective of scaling and root planing. J Clin Periodontol 2002;29(Suppl 2):6-16.  Back to cited text no. 25
Sculean A, Schwarz F, Berakdar M, Romanos GE, Brecx M, Willershausen B, et al. Non-surgical periodontal treatment with a new ultrasonic device (vector-ultrasonic system) or hand instruments. J Clin Periodontol 2004;31:428-33.  Back to cited text no. 26
Kocher T, Rühling A, Herweg M, Plagman HC. Proof of efficacy of different modified sonic scaler inserts used for debridement in furcations—a dummy head trial. J Clin Periodontol 1996;23:662-9.  Back to cited text no. 27
Pereira AH, Tirapelli C, Rodolpho LA. Ultrasonic dental scaler performance assessment with an innovative cavitometer. Am J Appl Sci 2010;7:290.  Back to cited text no. 28
Zafar MS. Comparing the effects of manual and ultrasonic instrumentation on root surface mechanical properties. Eur J Dent 2016;10:517-21.  Back to cited text no. 29
[PUBMED]  [Full text]  
Jain A, Gupta J, Bansal D, Sood S, Gupta S, Jain A. Effect of scaling and root planing as monotherapy on glycemic control in patients of type 2 diabetes with chronic periodontitis: A systematic review and meta-analysis. J Indian Soc Periodontol 2019;23:303-10.  Back to cited text no. 30
[PUBMED]  [Full text]  
Appukuttan D, Vinayagavel M, Tadepalli A. Utility and validity of a single-item visual analog scale for measuring dental anxiety in clinical practice. J Oral Sci 2014;56:151-6.  Back to cited text no. 31
Vernillo AT. Diabetes mellitus: Relevance to dental treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001;91:263-70.  Back to cited text no. 32
Bakhshandeh S, Murtomaa H, Mofid R, Vehkalahti MM, Suomalainen K. Periodontal treatment needs of diabetic adults. J Clin Periodontol 2007;34:53-7.  Back to cited text no. 33
Charalampous C, Patiakas S. Correlation between smoking and glucose metabolism in patients with hypertension. J Hypertens 2010;28:e300.  Back to cited text no. 34
McCulloch P, Lee S, Higgins R, McCall K, Schade DS. Effect of smoking on hemoglobin A1C and body mass index in patients with type 2 diabetes mellitus. J Investig Med 2002;50:284-7.  Back to cited text no. 35
Wennström JL, Tomasi C, Bertelle A, Dellasega E. Full-mouth ultrasonic debridement versus quadrant scaling and root planing as an initial approach in the treatment of chronic periodontitis. J Clin Periodontol 2005;32:851-9.  Back to cited text no. 36
Bassani DG, da Silva CM, Oppermann RV. Validity of the “community periodontal index of treatment needs” (CPITN) for population periodontitis screening. Cad Saude Publica 2006;22:277-83.  Back to cited text no. 37
Sun N, Burnside G, Harris R. Patient satisfaction with care by dental therapists. Br Dent J 2010;208:E9; discussion 212-3.  Back to cited text no. 38
Hampson SE, Glasgow RE, Foster LS. Personal models of diabetes among older adults: Relationship to self-management and other variables. Diabetes Educ 1995;21:300-7.  Back to cited text no. 39
Hampson SE, Glasgow RE, Toobert DJ. Personal models of diabetes and their relations to self-care activities. Health Psychol 1990;9:632-46.  Back to cited text no. 40
Paschalides C, Wearden AJ, Dunkerley R, Bundy C, Davies R, Dickens CM. The associations of anxiety, depression and personal illness representations with glycaemic control and health-related quality of life in patients with type 2 diabetes mellitus. J Psychosom Res 2004;57:557-64.  Back to cited text no. 41
Landsberg L, Saville ME, Young JB. Sympathoadrenal system and regulation of thermogenesis. Am J Physiol 1984;247:E181-9.  Back to cited text no. 42
Surwit RS, Schneider MS. Role of stress in the etiology and treatment of diabetes mellitus. Psychosom Med 1993;55:380-93.  Back to cited text no. 43
Surwit RS, van Tilburg MA, Zucker N, McCaskill CC, Parekh P, Feinglos MN, et al. Stress management improves long-term glycemic control in type 2 diabetes. Diabetes Care 2002;25:30-4.  Back to cited text no. 44
Canakçi CF, Canakçi V. Pain experienced by patients undergoing different periodontal therapies. J Am Dent Assoc 2007;138:1563-73.  Back to cited text no. 45
Bentsen B, Wenzel A, Svensson P. Comparison of the effect of video glasses and nitrous oxide analgesia on the perceived intensity of pain and unpleasantness evoked by dental scaling. Eur J Pain 2003;7:49-53.  Back to cited text no. 46
Arabaci T, Ciçek Y, Canakçi CF. Sonic and ultrasonic scalers in periodontal treatment: A review. Int J Dent Hyg 2007;5: 2-12.  Back to cited text no. 47


  [Table 1], [Table 2], [Table 3], [Table 4]


Print this article  Email this article
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Article in PDF (205 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  

    Materials and Me...
    Article Tables

 Article Access Statistics
    PDF Downloaded117    
    Comments [Add]    

Recommend this journal